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Abstract

For a subring R of the rationals Q, Hilbert’s tenth problem over R, denoted by HTP(R), is the
set of multivariate polynomial equations with integer coefficients which has a solution in R. The
undecidability status of HTP(Q) is a big open problem in both computability theory and number
theory. Although it is possible that HTP(Q) has incomplete Turing degree, no attempt has been
made so far to characterize the undecidability of HTP(Q). In this thesis, we introduce a new notion
called HTP-nontriviality of a subring of Q, and show that the following conditions are equivalent:
(1) HTP(Q) is undecidable, (2) there are nonmeager many HTP-nontrivial subrings of Q and (3)
Player I has a winning strategy for the Banach-Mazur game for the set of HTP-nontrivial subrings.
We also show a measure-theoretic analogue of this result.

1 Introduction
Hilbert’s tenth problem over a ring R, denoted by HTP(R), is a decision problem as to whether a given
diophantine equation has a solution in R. Originally, Hilbert asked the case where R = Z, the ring of
rational integers. In 1970, Matiyasevich [Mat70] proved that HTP(Z) is undecidable, based on the works
by Robison, Davis and Putnam [DPR61]. More precisely, they showed that the Halting Problem ∅′ is
1-reducible to HTP(Z).
In contrast to the case R = Z, the undecidability of HTP(Q), where Q denotes the field of rational

numbers, still remains a big open problem. For a typical ring R, a standard way to prove the unde-
cidability of HTP(R) is to show that Z admit a diophantine model in R. Here a diophantine model
of Z over R is a subset A ⊆ Rn for some n which is diophantine over R, equipped with a bijection
Z → A under which the image of the graphs of addition and multiplication on Z are also diophantine
as subsets of R3n. A subset D ⊆ Rn is called diophantine if D is the projection of the zero locus of
some polynomial, i.e., there exists a polynomial f (⃗a, x⃗) ∈ R[⃗a, x⃗] in n+m variables for some m such that
D = { a⃗ ∈ Rn | ∃x⃗ ∈ Rm[f (⃗a, x⃗) = 0] }. If Z admit a diophantine model in R, then HTP(Z) is 1-reducible
to HTP(R) and ∅′ is thus 1-reducible to HTP(R). However, Cornelissen and Zahidi [CZ00] showed that
Z does not admit a diophantine model in Q under Mazur’s conjecture [Maz92, Conjecture 3]. Therefore
it is necessary to develop another technique to prove the undecidability (or possibly decidability) of
HTP(Q) unless Mazur’s conjecture is false.
On the other hand, there is another important open problem related to the undecidable problems:

is there a “natural” undecidable problem whose Turing degree is incomplete? A noncomputable set A
of natural numbers has incomplete Turing degree if A <T ∅′. Friedberg [Fri57] and Mučnik [Muc56]
independently showed that there indeed exists a computably enumerable set A of natural numbers such
that ∅ <T A <T ∅′. However, the set A they constructed is highly artificial, and no “natural” example
of undecidable problem with incomplete Turing degree is known so far. Moreover, for every “natural”
decision problem A known to be undecidable, its undecidability is proved by constructing a Turing
reduction from ∅′ to A.
It is possible that the undecidability of HTP(Q) might be proved without constructing a Turing

reduction from ∅′. Moreover, it is also possible that HTP(Q) might have incomplete Turing degree. The
first result in this direction is Theorem 1.1 below, which is given by Miller. From now on, we freely use
terminologies and notations defined in Section 2.

Theorem 1.1 (Miller, Corollary 1 in [Mil16]). Let P := {2, 3, 5, 7, . . . } be the set of prime numbers. For
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every set C ∈ 2ω, the following conditions are equivalent.

1. C ≤T HTP(Q).
2. {W ∈ 2P | C ≤T HTP(RW ) } = 2P.
3. {W ∈ 2P | C ≤T HTP(RW ) } is not meager in 2P.

However, Theorem 1.1 has a crucial problem: if HTP(Q) had incomplete Turing degree, how could one
define an undecidable set C ≤T HTP(Q)? One option is setting C = ∅′, whereas there are only meager
many set W known to satisfy ∅′ ≤T HTP(RW ). We discuss this point again in Section 3.1.
Although the possibility that HTP(Q) has incomplete Turing degree has been recognized, no attempt

has been made so far to characterize the undecidability of HTP(Q). In this thesis, we introduce a new
notion, HTP-nontriviality of subrings of Q (Definition 3.1). Then we show the following theorem, which
states that the undecidability of HTP(Q) can be characterized as the abundance of the HTP-nontrivial
subrings and the existence of a winning strategy for certain Banach-Mazur game.

Theorem (Theorem 3.2). The following conditions are equivalent.

1. HTP(Q) >T ∅, i.e., HTP(Q) is undecidable.
2. There are comeager many HTP-nontrivial subrings of Q.
3. There are nonmeager many HTP-nontrivial subrings of Q.
4. There is a subring of Q which is both HTP-nontrivial and HTP-generic.
5. Player I has a winning strategy for Banach-Mazur game for the HTP-nontrivial subrings of Q.
6. Player II does not have a winning strategy for Banach-Mazur game for the HTP-nontrivial subrings

of Q.

Theorem 3.2 opens a new avenue for undecidability proofs for HTP(Q). That is, the undecidability of
HTP(Q) reduces to the problem to find a winning strategy for certain game. The most important point
is that undecidability proofs based on Theorem 3.2 also work even if HTP(Q) has incomplete Turing
degree and no fixed noncomputable set C is needed in contrast to Miller’s Theorem 1.1. Moreover, if one
find such proof, then HTP(Q) become the first undecidable problem whose undecidability is established
without constructing a Turing reduction from the Halting Problem ∅′.
We also show a measure-theoretic analogue of this theorem (Theorem 3.4). In Section 3.2, we reinter-

pret a known construction in terms of Banach-Mazur game. In Section 3.3, we show some partial results
about abundance of HTP-nontrivial subsets.
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2 Preliminaries
In this thesis, we consider HTP(R) only for subrings R of Q to approach HTP(Q). Let P := {2, 3, 5, 7, . . . }
be the set of prime numbers. Every subring of Q is of the form RW := Z[W−1] for some subset W of
P. The function W 7→ RW is a bijection from the power set 2P of P to the set of subrings of Q. Define
pn as the n-th prime number, starting with p0 = 2. The function n 7→ pn is a bijection from the set
ω = {0, 1, 2, . . . } of natural numbers to P. So the Turing degree of a subset W of P is that of W as a
subset of ω.
Let W ∈ 2P. For simplicity, we regard HTP(RW ) as the set of polynomials with integer coefficients

which have a solution in RW , that is,

HTP(RW ) = { f(x1, . . . , xn) ∈ Z[x1, x2, . . . ] | ∃x⃗ ∈ (RW )n[f(x⃗) = 0] }.

Here, considering the polynomials in Z[x1, x2, . . . ] instead of RW [x1, x2, . . . ] does not make any difference
since one can eliminate denominators which appears in polynomials in RW [x1, x2, . . . ]. By fixing a
computable bijection ω → Z[x1, x2, . . . ], we regard HTP(RW ) as a subset of ω. So the Turing degree of
HTP(RW ) also make sense.
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2.1 Topology and measure on the Cantor space 2P

The Cantor space 2ω is the power set of ω. Because of the standard bijection ω ∋ n 7→ pn ∈ P, we also
call 2P Cantor space. We often view 2P as the set of infinite paths through the complete binary tree 2<P.
An element of 2<P can be regarded as a binary string of finite length, i.e., a function from a downward
closed finite subset of P to {0, 1}. An element of 2P also can be regarded as a binary string of infinite
length. For two binary strings σ and τ in 2<P, we write σ ≼ τ if σ is an initial segment of τ ; σ ≺ τ means
that σ ≼ τ and σ ̸= τ . Since a set W ∈ 2P can be viewed as an infinite sequence, the notation σ ≺ W
also makes sense. The concatenation of two strings σ and τ in 2<P is denoted by σ⌢τ . The length of
a string σ ∈ 2<P is denoted by |σ|. For a set W ∈ 2P and n ∈ ω, W ↾n denotes the initial segment of
W which is of length n. For i ∈ {0, 1} and n ∈ ω ∪ {∞}, in denotes the string of length n which only
consists of i.
A basic open set of 2P is given in the form

Uσ := {W ∈ 2P | σ ≺ W }

for some binary string σ ∈ 2<P. The topology on 2P generated by {Uσ | σ ∈ 2<P } coincide with the
topology on 2P given by the countable product topology of the discrete space {0, 1}. A subset X ⊆ 2P

is called nowhere dense if interior of its closure Int(Cl(X )) is the empty set. The union of a countable
family of nowhere dense sets is called meager. The complement of meager set in 2P is called comeager.
From the fact that the Cantor space 2P is completely metrizable, Baire category theorem ensures that
every comeager set in 2P is not meager.
The Cantor space 2P can be equipped with the standard probability measure µ, which satisfies µ(Uσ) =

2−|σ| for any binary string σ ∈ 2<P. In particular, µ(2P) = µ(U∅) = 1. A subset X ⊆ 2P is called null if
µ(X ) = 0.

2.2 Some properties of the HTP-operator

Proposition 2.1. For any set W ∈ 2P, HTP(RW ) is c.e. in W and

W ⊕HTP(Q) ≤1 HTP(RW ) ≤1 W ′

where ⊕ denotes the Turing join and W ′ denotes the Turing jump of W .

Proof. The reduction W ≤1 HTP(RW ) is established by the injection p 7→ px − 1. For HTP(Q) ≤1

HTP(RW ), see Corollary 5.2 in [EMPS17]. The rest part is easy.

Definition 2.2 (cf. Section 3 in [Mil17]). For every polynomial f ∈ Z[x1, x2, . . . ], define

A(f) := {W ∈ 2P | f ∈ HTP(RW ) },
B(f) := ∂A(f), the boundary of A(f),

C(f) := Int(A(f)), the exterior of A(f).

Lemma 2.3. For every polynomial f ∈ Z[x1, x2, . . . ], A(f) is an open set in 2P. In particular, B(f) is
a nowhere dense set in 2P.

Proof. Let f ∈ Z[x1, x2, . . . ] be a polynomial in n variable and W ∈ A(f). Then f ∈ HTP(RW ) and
there is a solution x⃗ ∈ (RW )n such that f(x⃗) = 0. Since RW =

∪
m∈ω R(W ↾m)⌢0∞ , there exists some

m ∈ ω such that x⃗ ∈ (R(W ↾m)⌢0∞)n. Then for any set V ≻ W ↾m satisfies x⃗ ∈ (RV )
n and we obtain

UW ↾m ⊆ A(f).
In general, the boundary set of an open set is closed and has no interior point. Therefore B(f) is

nowhere dense in 2P.
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Definition 2.4 (Definition 2 in [Mil16]). The entire boundary set is defined as B :=
∪

f∈Z[x1,x2,... ]
B(f),

which is a meager set by Lemma 2.3. A set W ∈ 2P is called HTP-generic if W ̸∈ B. HTP-genericity is
comeager.

However, the measure of the entire boundary set B is unknown.

Proposition 2.5 (Miller, Proposition 2 in [Mil16]). For every HTP-generic set W ∈ 2P,

HTP(RW ) ≤T W ⊕HTP(Q).

Note that the opposite reduction ≥T holds for any W ∈ 2P.

2.3 Banach-Mazur game

Banach-Mazur game is a two-player infinite game introduced by S. Mazur. We only use a special version
of Banach-Mazur game, which is for the Cantor space 2ω.
For a subset A of 2ω, the Banach-Mazur game for A, denoted by BM(A), is defined as follows. First,

Player I chooses a binary string σ0 ∈ 2<ω. Then Player II chooses σ1 ∈ 2<ω such that σ0 ≺ σ1. For
given σ2i−1 ∈ 2<ω (i ≥ 1), Player I chooses σ2i ∈ 2<ω such that σ2i−1 ≺ σ2i and then Player II chooses
σ2i+1 ∈ 2<ω such that σ2i ≺ σ2i+1. Player I wins BM(A) if the resulting point A =

∪
n∈ω σn of 2ω

belongs to A. Player II wins otherwise.

Definition 2.6. A strategy for Player I is a map α :
∪

i∈ω(2
<ω)2i → 2<ω such that α(σ0, . . . , σ2i−1) ≻

σ2i−1 for any finite sequence (σ0, . . . , σ2i−1) of even length. Similarly, a strategy for Player II is also
defined as a map β :

∪
i∈ω(2

<ω)2i+1 → 2<ω. The play α ∗ β for strategies α and β is the resulting point
A =

∪
n∈ω σn when Player I follows α and Player II follows β. A strategy α for Player I is called a

winning strategy for BM(A) if α ∗ β ∈ A for any strategy β for Player II. Similarly, a strategy β for
Player II is a winning strategy for BM(A) if α ∗ β ̸∈ A for any strategy α for Player I.

Lemma 2.7. For any subset A ⊆ 2ω, the following properties hold.

1. If A is comeager, then Player I has a winning strategy for BM(A).
2. If A is meager, then Player II has a winning strategy for BM(A).

Proof. Suppose A is comeager. From the definition of meagerness, there exists a family (Xs)s∈ω of
nowhere dense sets such that A =

∪
s∈ω Xs. Let σ2s−1 be the last move of Player II where σ−1 = ∅.

Since the closure Cl(Xs) has no interior point, Uσ2s−1 − Cl(Xs) is a nonempty open set of 2ω. Hence
Player I can choose σ2s ≻ σ2s−1 so that Uσ2s ∩Cl(Xs) = ∅. Then the resulting set A =

∪
n∈ω σn satisfies

A ∈
∩

s∈ω Xs = A. The rest half of proof is similar.

In fact, Player II has a winning strategy for BM(A) if A is meager. For detail, see e.g. 6A.14 in [Mos09].

3 Results

3.1 Equivalent conditions for the undecidability of HTP(Q)

Definition 3.1. We say that a set W ∈ 2P is HTP-nontrivial if W <T HTP(RW ). We write N for the
set of the HTP-nontrivial sets. Similarly, the 1-nontrivial, m-nontrivial, tt-nontrivial and bT-nontrivial
sets are defined by replacing Turing reduction <T in the above definition by 1-reduction <1, many-one
reduction <m, truth-table reduction <tt and bounded Turing reduction (also known as weak truth-table
reduction) <bT, respectively. For r ∈ {1,m, tt,bT}, We write Nr for the set of the r-nontrivial sets.

Theorem 3.2. The following conditions are equivalent.

1. HTP(Q) >T ∅, i.e., HTP(Q) is undecidable.
2. N is comeager in 2P.
3. N is not meager in 2P.
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4. N ∩ B ̸= ∅.
5. Player I has a winning strategy for BM(N ).
6. Player II does not have a winning strategy for BM(N ).

In particular, BM(N ) is determined, i.e., either Player I or II has a winning strategy for BM(N ).

Proof of Theorem. (1) =⇒ (2). It is well-known that the Turing upper cone {B ∈ 2ω | A ≤T B } over a
set A ∈ 2ω is meager in 2ω unless A is computable (for example, see EXAMPLE 13.2.21 in [Coo04]).
Therefore there are comeager many sets in which HTP(Q) is not computable. By Proposition 2.1,
every such set W satisfies W ̸≥T HTP(Q) ≤T HTP(RW ) and thus W <T HTP(RW ).

(2) =⇒ (3) =⇒ (4). Trivial.
(4) =⇒ (1). Let W ∈ N ∩ B. Since W is both HTP-nontrivial and HTP-generic, it follows from Propo-

sition 2.5 that
W <T HTP(RW ) ≤T W ⊕HTP(Q). (∗)

Hence HTP(Q) must be undecidable.
(2) =⇒ (5) =⇒ (6) =⇒ (3). By Lemma 2.7.

Since B is comeager, we may use BM(N ∩B) instead of BM(N ) in Theorem 3.2. Theorem 3.2 implies
that N (resp. N ∩ B) is either meager (resp. empty) or comeager, therefore it also can be viewed as a
topological zero-one law for N (resp. N ∩ B).

Corollary 3.3. The following conditions are equivalent.

1. HTP(Q) is decidable.
2. N is not comeager in 2P.
3. N is meager in 2P.
4. N ⊆ B.
5. Player I does not have a winning strategy for BM(N ).
6. Player II has a winning strategy for BM(N ).

Next we show a measure-theoretic analogue of Theorem 3.2 under an additional assumption.

Theorem 3.4. Suppose µ(B) < 1. Then the following conditions are equivalent.

1. HTP(Q) >T ∅, i.e., HTP(Q) is undecidable.
2. µ(N ) = 1.
3. µ(N ) > µ(B).
4. N ∩ B ̸= ∅.

This theorem can also be viewed as a zero-one law if, in addition, µ(B) = 0.

Proof. By a result due to Sacks, the Turing upper cone over a set A ∈ 2ω has measure 0 unless A is
computable (see §10 THEOREM 1 in [Sac64]). Therefore the set of the sets in which HTP(Q) is not
computable has measure 1. The rest of the proof is almost same as in Theorem 3.2.

However, the assumption in Theorem 3.4 contradicts diophantineness of Z in Q because of the following
Miller’s result.

Theorem 3.5 (Miller, Theorem 6.7 in [Mil19]). If µ(B) < 1, then Z is not a diophantine set in Q.

So, Theorem 3.4 does not hold if Z is diophantine in Q, contrary to Mazur’s conjecture.
An important point for our main theorems is the inequality (∗). It can also be satisfied by HTP-

complete sets, which is introduced by Miller in [Mil19]. A set W ∈ 2P is called HTP-complete if
W ′ ≤1 HTP(RW ). Note that every HTP-complete set is also HTP-nontrivial. However, it is known that
there are only few HTP-complete sets in 2P.

Theorem 3.6 (Theorem 3.2 in [Mil19], cf. Corollary 3.3 in [KM19]). The set of all HTP-complete subsets
of P is meager within the power set of P and has Lebesgue measure 0.
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Therefore HTP-complete sets is not suitable for Theorem 3.2. Moreover, at present, we cannot rule out
the possibility that HTP(Q) is undecidable but there is no set W ∈ 2P such that W is both HTP-generic
and HTP-complete.

3.2 Constructing HTP-generic set via Banach-Mazur game

The following proposition generalizes Proposition 3.1 in [EMPS17] in terms of Banach-Mazur game.

Proposition 3.7. For a string σ ∈ 2<P and a real number r ∈ [0, 1) which is computably approximable
from above, there exists a set W ∈ 2P such that

1. σ ≺ W .
2. W ≤T HTP(Q).
3. W is HTP-generic.
4. HTP(RW ) ≤T HTP(Q).
5. The lower density of W is r, i.e.,

lim inf
n→∞

|W ∩ {p0, p1, . . . , pn−1}|
n

= r.

In particular, W is a co-infinite set with HTP(RW ) ≡T HTP(Q).

Proof. Fix a computable enumeration (fs)s∈ω of the polynomials in Z[x1, x2, . . . ] and a computable
decreasing sequence (qs)s∈ω of rational numbers such that lims→∞ qs = r. Now each player follows the
following strategies.

• Define σ0 = σ. For a given σ2s+1, Player I checks whether fs ∈ HTP(Rσ2s+1
⌢1∞). If so, take

a solution x⃗ ∈ (Rσ2s+1
⌢1∞)n of fs = 0. Let m ∈ ω be the minimum number such that x⃗ ∈

(Rσ2s+1
⌢1m0∞)n. Then Player I chooses σ2s+2 = σ2s+1

⌢1m´|σ2s+1| so that Uσ2s+2
∩ B(fs) = ∅. If

fs ̸∈ HTP(Rσ2s+1
⌢1∞), define σ2s+2 = σ2s+1

⌢1.
• For a given σ2s, let m ∈ ω be the minimum number such that

|σ2s
⌢0m|1

|σ2s
⌢0m|

≤ qs + 2−s

where |σ2s
⌢0m|1 denotes the number of 1’s occurring in σ2s

⌢0m. Then Player II chooses σ2s+1 =
σ2s

⌢0m.

The resulting set W =
∪

n∈ω σn ≻ σ is computable in HTP(Q) since the both strategies are computable
in HTP(Q). The HTP-genericity of W follows from the strategy for Player I. Then it follows from
Proposition 2.5 that HTP(RW ) ≤T W ⊕ HTP(Q) ≤T HTP(Q). The lower density of W is r because of
the strategy for Player II.

Note that the strategy for Player II in the proof is a winning strategy for BM(B).

3.3 Partial results and Questions

Theorem 3.8. The set Nm of the m-nontrivial sets is comeager in 2P.

Proof. For each computable function h : Z[x1, x2, . . . ] → ω, put Xh := {W | HTP(RW ) ≤m W via p(–) ◦ h }.
Note that Nm =

∩
h Xh. Since B is comeager in 2P, it suffices to show that each Xh ∩ B is closed and

nowhere dense in B.
First we show that Xh ∩ B is an open set in B. Let W ∈ Xh ∩ B. Then there exists a polynomial f

which satisfies one of the following conditions.

1. f ∈ HTP(RW ) ∧ ph(f) ̸∈ W .
2. f ̸∈ HTP(RW ) ∧ ph(f) ∈ W .
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If (1) holds, then there exists some n ∈ ω such that f ∈ HTP(R(W ↾n)⌢0∞). Choose a sufficiently
long initial segment σ ≺ W so that |σ| > max{n, h(f)}. Then any HTP-generic set V ≻ σ satisfies
f ∈ HTP(RV ) ∧ ph(f) ̸∈ V . Suppose (2) is true. Then W ∈ C(f) since W is HTP-generic. Hence there
exists some n ∈ ω such that f ̸∈ HTP(RU ) for any U ≻ W ↾n. Then similarly an initial segment σ ≺ W
with |σ| > max{n, h(f)} ensures that any HTP-generic set V ≻ σ satisfies f ̸∈ HTP(RV ) ∧ ph(f) ∈ V .

Next we show that Xh ∩ B has no interior point in B. Let W ∈ Xh ∩ B and σ ≺ W . Put n = |σ| and
f = (pnx− 1)2 + (pn+1y − 1)2. Then A(f) = {U ∈ 2P | pn ∈ U ∧ pn+1 ∈ U }. Define

τ =


σ⌢11 if h(f) < n ∧ σ(h(f)) = 0,

σ⌢00 if h(f) < n ∧ σ(h(f)) = 1,

σ⌢01⌢1h(f)´(n+1) if h(f) ≥ n ∧ h(f) ̸= n,

σ⌢10⌢1h(f)´(n+1) if h(f) ≥ n ∧ h(f) ̸= n+ 1.

By Proposition 3.7, there exists an HTP-generic set V ≻ τ , which satisfies V ∈ Xh ∩ B.

For each total Turing functional Φ, put XΦ := {W ∈ 2P | HTP(RW ) = ΦW }. Then one can prove
that XΦ ∩ B is closed in B in a similar manner to Theorem 3.8. However, it is not clear that whether
XΦ ∩ B has an internal point in B.

Theorem 3.9. The set N1 of the 1-nontrivial sets has measure 1.

Proof. Fix a computable enumeration (fs)s∈ω of the polynomials in Z[x1, x2, . . . ]. Let h : Z[x1, x2, . . . ] →
P be a computable injection. It suffices show that Xh := {W ∈ 2P | HTP(RW ) ≤1 W via h } has measure
0. We inductively construct two functions k, l : ω → ω such that for all s ∈ ω,

1. Xh ⊆ {W ∈ 2P | pk(s) ∈ W ⇐⇒ h(fl(s)) ∈ W } and
2. k(s) < h(fl(s)) < k(s+ 1).

Stage s = 0. Put k(0) = 0.
Stage s+ 1. Since h is injective, there exists some m ∈ Z such that h(m(pk(s)x−1)) > k(s). Let l(s) ∈ ω

be the unique number such that fl(s) = m(pk(s)x− 1) and put k(s+ 1) = h(fl(s)) + 1.

It follows from (2) that

µ(Xh) ≤ µ

(∩
s∈ω

{W ∈ 2P | pk(s) ∈ W ⇐⇒ h(fl(s)) ∈ W }

)

= lim
s→∞

µ

(∩
t<s

{W ∈ 2P | pk(t) ∈ W ⇐⇒ h(fl(t)) ∈ W }

)
= lim

s→∞
2−s = 0.

Question 3.10. How about the Baire category of Ntt and NbT?

Question 3.11. How about the measure of Nm, Ntt and NbT?
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