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Abstract. A language L is said to be C-measurable, where C is a class
of languages, if there is an infinite sequence of languages in C that “con-
verges” to L. In this paper, we investigate the measuring powers of Gcom
of the class of all languages recognised by finite commutative groups and
its subclass named MOD. A language is in MOD if membership of a word
in the language only depends on its length modulo some fixed integer. In
particular, we show that, for a given regular language L, it is decidable
whether L is Gcom-measurable (MOD-measurable, respectively) or not.
Our results demonstrate that there is a huge gap between the expressive
power of group languages and commutative group languages, even from
a (very rough) measure theoretic point of view.

1 Introduction

The notion of C-measurability for a class C of languages is introduced by [6] and
it was used for classifying non-regular languages by using regular languages. A
language L is said to be C-measurable if there is an infinite sequence of languages
in C that converges to L. Also, the C-measurability can be defined by using so-
called Carathéodory extension [7], a purely measure theoretic notion. Roughly
speaking, L is C-measurable means that it can be approximated by a language in
C with arbitrary high precision: the notion of “precision” is formally defined by
the density of formal languages. Hence that a language L is not C-measurable
(C-immeasurable) means that L has a complex shape so that it can not be
approximated by languages in C.

So far, the decidability and different characterisation of C-measurability is
systematically studied for some subclass C of star-free languages. For example,
two simple and decidable characterisations of PT-measurable and AT-measurable
languages are given in [8], where PT is the class of all piecewise testable languages
and AT is the class of all alphabet testable languages (i.e., languages definable
by the first-order logic with only one variable). While the AT-measurability is
strictly weaker than PT-measurability, it is interesting that the computational
complexity of the AT-measurability is much higher than PT-measurability: de-
ciding the AT-measurability of a given regular language L (represented by a de-
terministic automaton) is PSPACE-complete but deciding the PT-measurability



of L can be done in linear time with respect to the number of states [10]. Further-
more, in [8,9] it was shown that the GD-measurability and UPol-measurability
are equivalent, where GD is the class of all generalised definite languages (i.e.,
languages that can be defined by a finite Boolean combination of prefix and suffix
tests of some bounded length) and UPol is the class of all unambiguous polyno-
mials (i.e., languages definable by the first-order logic with only two variables).
Some properties of the measuring power of star-free languages is investigated in
[7], but the decidability for regular languages is still unknown.

On the other hand, for the measuring power of group languages, nothing is
yet known. A language is said to be a group language if its syntactic monoid is a
finite group, equivalently, it can be recognised by a permutation automaton [11].
Although the definition of group languages is very simple from an algebraic
point of view, this class dose not have a language theoretic nor logical different
characterisation. To borrow the phrase used by Place–Zeitoun [4]: “This makes
it difficult to get an intuitive grasp about group languages, which may explain
why this class remains poorly understood.”

This paper addresses the first development step for understanding the mea-
suring power of group languages. In this paper, we investigate the measuring
power of G the class of all group languages, Gcom the class of commutative
group languages and MOD a subclass of Gcom (see Section 2 for the precise
definition). The main results of this paper are three kinds.

(1) Every group language whose syntactic monoid is non-commutative is Gcom-
immeasurable (Theorem 1).

(2) A decidable characterisation of the Gcom-measurability for regular languages
(Theorem 2).

(3) A simple decidable characterisation of the MOD-measurability (Theorem 3).

2 Preliminaries

This section provides the precise definitions of density, measurability, group lan-
guages and its two subclasses. REGA denotes the family of all regular languages
over an alphabet A. For a word w ∈ A∗ and a letter a ∈ A, we write |w|a the
number of occurrences of a in w. The complement of L over A is denoted by
Lc = A∗ \ L. We assume that the reader has a standard knowledge of algebraic
language theory (cf. [2,3]).

The main targets of this paper are the following three subclasses of regular
languages. The group languages G, the commutative group languages Gcom and
the modulo languages MOD:

GA
def
== {L ⊆ A∗ | L is recognised by a finite group }

GcomA
def
== {L ⊆ A∗ | L is recognised by a finite commutative group }

MODA
def
==

{
L ⊆ A∗

∣∣∣∣∣ L is recognised by a morphism η : A∗ → G into a

finite group G such that η(a) = η(b) for all a, b ∈ A

}



A monoid M divides a monoid N if M is a monoid homomorphic image of
a submonoid of N . It is well-known that a monoid M recognises a language L
if and only if the syntactic monoid ML of L divides M (cf. [2, Theorem 10.2.6]),
hence L is in GA (GcomA, respectively) if and only if ML is a finite group (a
finite commutative group, respectively). For a ∈ A, q, r ∈ N such that r < q, we
let

La
q,r = {w ∈ A∗ | |w|a ≡ r mod q } and Lq,r = {w ∈ A∗ | |w| ≡ r mod q }.

It is also known that GcomA (MODA, respectively) is the smallest Boolean alge-
bra containing all languages of La

q,r (Lq,r, respectively) (cf. [3,4]). Hereafter, we
only consider an alphabet A such that #(A) ≥ 2 (because MODA = GcomA =
GA if #(A) = 1) and sometimes omit the subscript A for denoting these classes
of languages.

2.1 Density and measurability of formal language

For a set X, we denote by #(X) the cardinality of X. We denote by N the set
of natural numbers including 0.

Definition 1 (cf. [1]). The density δA(L) of L ⊆ A∗ is defined as

δA(L)
def
== lim

n→∞

1

n

n−1∑
k=0

#
(
L ∩Ak

)
#(Ak)

if it exists, otherwise we write δA(L) = ⊥. The language L is called null if
δA(L) = 0, and dually, L is called co-null if δA(L) = 1.

Example 1. It is known that every regular language has a rational density (cf. [1])
and it is computable. For each word w, the language A∗wA∗, the set of all words
that contain w as a factor, is of density one (co-null). This fact follows from the
so-called infinite monkey theorem: take any word w. A random word of length n
contains w as a factor with probability tending to 1 as n → ∞.

We list some basic properties of the density as follows.

Lemma 1. Let K,L ⊆ A∗ with δA(K) = α, δA(L) = β. Then we have:
(1) δA(L \K) = β −α if K ⊆ L. (2) δA(K

c) = 1−α. (3) δA(K ∪L) = α+ β if
K ∩ L = ∅.

Lemma 2. Let η : A∗ → G be a morphism onto a finite group. For any g ∈ G,
we have δA(η

−1(g)) = #(G)
−1

.

For more detailed properties of δA, see Chapter 13 of [1].
The notion of “measurability” on formal languages is defined by a standard

measure theoretic approach as follows.



Definition 2 ([6]). Let CA be a family of languages over A. For a language
L ⊆ A∗, we define its CA-inner-density µCA

(L) and CA-outer-density µCA
(L)

over A as

µCA
(L)

def
==sup{ δA(K) | K ⊆ L,K ∈ CA, δA(K) 6= ⊥} and

µCA
(L)

def
== inf{ δA(K) | L ⊆ K,K ∈ CA, δA(K) 6= ⊥}, respectively.

A language L is said to be CA-measurable if µCA
(L) = µCA

(L) holds. We say

that an infinite sequence (Ln)n of languages over A converges to L from inner
(from outer, respectively) if Ln ⊆ L (Ln ⊇ L, respectively) for each n and
limn→∞ δA(Ln) = δA(L).

The following is an example of Gcom-measurable non-regular language.

Example 2 ([6]). The semi-Dyck language D = {ε, ab, aabb, abab, aaabbb, . . .}
over A = {a, b} is Gcom-measurable. For each k ≥ 2, the language Lk = {w ∈
A∗ | |w|a = |w|b mod k} is in Gcom, because η−1(0) = Lk holds for the mor-
phism η : A∗ → Z/kZ where h(a) = 1 and h(b) = k−1. Obviously, D ⊆ Lk holds
and it follows from Lemma 2 that δA(Lk) = 1/k holds. Hence δA(Lk) tends to
zero if k tends to infinity.

For a family CA of languages over A, we denote by ExtA(CA) (RExtA(CA),
respectively) the class of all CA-measurable languages (CA-measurable regular
languages, respectively) over A.

Lemma 3 ([7]). The operator ExtA is a closure, i.e., it satisfies the following
three properties for each C ⊆ D ⊆ 2A

∗
: (extensive) C ⊆ ExtA(C), (monotone)

ExtA(C) ⊆ ExtA(D), and (idempotent) ExtA(ExtA(C)) = ExtA(C). Moreover,
ExtA(CA) is closed under Boolean operations and quotients if CA is closed under
Boolean operations and quotients.

2.2 Semilinear sets and some background from group theory

Let A = {a1, . . . , ad}. The Parikh mapping PkhA : A∗ → Nd is defined by

PkhA(w)
def
== (|w|a1

, . . . , |w|ad
). This can be naturally extended to a map tak-

ing a language L over A: PkhA(L) = {PkhA(w) | w ∈ L }. A set S ⊆ Nd is
called linear if S is of the form

S = { c+ x1p1 + · · ·+ xkpk | xi ∈ N for each i }

for some k ∈ N and some vectors c,p1, . . . ,pk ∈ Nd. In this case, we call c
a constant vector and p1, . . . ,pk are period vectors of (this representation of)
S. A set S ⊆ Nd is called semilinear if it is a finite union of linear sets. It is
well-known that (i) every regular language has a semilinear Parikh image, and
(ii) the complement of a semilinear set is also semilinear (cf. [5]).



Definition 3 (span). For each K ∈ {N,Z,Q,R} and p1, . . . ,pr ∈ Kr, we define

spanK(p1, . . . ,pr)
def
== {x1p1 + · · ·+ xrpr | x1, . . . , xr ∈ K }.

With this notation, a linear set S ⊆ Nd is written as S = c+ spanN(p1, . . . ,pr).

A finitely generated commutative group M is called free if M is isomorphic
to Zr for some r ∈ N. This r is called the rank of M , denoted by rank(M). It is
known that every subgroup M of Zr is also free of rank ≤ r.

Proposition 1. Let r ∈ N and M ⊆ Zr be a subgroup such that rank(M) = r.
Then there exists N ∈ N such that NZr ⊆ M . In particular, the index (Zr : M)
is finite.

Proof. Let {e1, . . . , er} be the standard basis of Zr. Since rank(M) = r, there
exists a free basis {p1, . . . ,pr} of M such that M = spanZ(p1, . . . ,pr). If we put
MQ = spanQ(p1, . . . ,pr), then dimQ(MQ) = r, i.e., MQ = Qr ⊇ Zr. Therefore
there exist ci,j ∈ Z (1 ≤ i, j ≤ r) and N ∈ N such that

ei =
ci,1
N

p1 + · · ·+ ci,r
N

pr

for each i = 1, . . . , r. Thus NZr = spanZ(Ne1, . . . , Ner) ⊆ M and (Zr : M) ≤
(Zr : NZr) = Nr < ∞. ut
Definition 4 (rank and index of coset). For every linear set Λ ⊆ Zr, there
exist c ∈ Zr and p1, . . . ,pµ ∈ Zr such that Λ = c + spanZ(p1, . . . ,pµ). Then
M = spanZ(p1, . . . ,pµ) is a subgroup of Zr, and we write

rank(Λ)
def
== rank(M), (Zr : Λ)

def
== (Zr : M).

Note that rank(Λ) and (Zr : Λ) do not depend on the choice of c,p1, . . . ,pµ.

More generally, we write (G : gH)
def
== (G : H) for a group G, a subgroup H, and

an element g ∈ G.

Lemma 4. Let G be a group, H,K ⊆ G be subgroups, and a, b ∈ G. If aH∩bK 6=
∅, then aH ∩ bK = x(H ∩K) for any x ∈ aH ∩ bK.

Proof. If x ∈ aH ∩ bK, then xH = aH and xK = bK. Thus aH ∩ bK =
xH ∩ xK = x(H ∩K). ut
Thanks to Lemma 4, we can write rank(Λ1 ∩ Λ2) consistently.

Proposition 2. Let r ∈ N, M ⊆ Zr be a subgroup, and πn! : Zr → (Z/n!Z)r be
the natural surjection. Then

rank(M) < r =⇒ lim
n→∞

((Z/n!Z)r : πn!(M)) = ∞.

For the proof of Proposition 2, see Appendix.

For a group G, the commutator of two elements x, y ∈ G is defined as [x, y]
def
==

xyx−1y−1. Note that [x, y] is the identity element if and only if x and y commute.
The commutator subgroup of G, denoted by [G,G], is the subgroup generated
by all the commutators of G. Note that [G,G] is a normal subgroup of G since
z[x, y]z−1 = [zxz−1, zyz−1] for all x, y, z ∈ G. The abelianisation of G is defined

as the quotient group Gab def
== G/[G,G].



3 (Counter)examples of Gcom-measurable and
MOD-measurable languages

To grasp an intuition of Gcom-measurability and MOD-measurability, first we ex-
amine concrete examples of Gcom-measurable and MOD-measurable languages.

Proposition 3. Let FIN be the family of all finite and co-finite languages over
A, Com be the all languages whose syntactic monoid is a finite commutative
monoid, and AT be the Boolean algebra generated by the languages of the form
A∗aA∗.

(1) ExtA(FIN) ⊊ ExtA(MOD).
(2) ExtA(AT) ⊊ ExtA(Gcom).
(3) ExtA(Gcom) = ExtA(Com).

Proof. We first show the strictness of (1) and (2). Every language in ExtA(FIN)
or ExtA(AT) is null or co-null since every language in FIN or AT is so. The
language L2,0 of even-length words belongs to MOD and has density δA(L2,0) =
1/2 by Lemma 2. Thus L2,0 ∈ ExtA(MOD)\ExtA(FIN) and L2,0 ∈ ExtA(Gcom)\
ExtA(AT).

(1) Let F ⊆ A∗ be a non-empty finite language. Define ℓF = { |w| | w ∈ F } ⊆ N
and N = max ℓF . For each k ≥ 1, the language

Fk = {w ∈ A∗ | (|w| mod N + k) ∈ ℓF }

clearly belongs to MOD. By construction, it is easy to see that F ⊆ Fk and
δA(Fk) = #(ℓF ) /(N + k) holds. This means that the density of Fk tends
to zero if k tends to infinity, i.e., Fk converges to F from outer. Since MOD
is closed under Boolean operations, we have ExtA(FIN) ⊆ ExtA(MOD) by
Lemma 3.

(2) Let a ∈ A and B = A \ {a}. First we show the Gcom-measurability of B∗ =
(A∗aA∗)c ∈ AT. The construction of approximations is similar with the proof
of Item (1). For each k ≥ 2, the language La

k,0 = {w ∈ A∗ | |w|a ≡ 0 mod k }
is a commutative group language as stated in Section 2. Clearly, La

k,0 satisfies
B∗ ⊆ Lk and it is easy to see that limk→∞ δA(Lk) = 0 holds. Also, Gcom
is closed under Boolean operations hence we have ExtA(AT) ⊆ ExtA(Gcom)
by Lemma 3.

(3) The inclusion ExtA(Gcom) ⊆ ExtA(Com) is clear because Gcom ⊆ Com
holds and by the monotonicity of ExtA (Lemma 3). To show the reverse
inclusion, it is enough to show that Com ⊆ ExtA(Gcom) holds thanks to the
idempotency of ExtA (Lemma 3). We use the following fact [3, Proposition
1.11]: Com is the Boolean algebra generated by the languages of the form
L(a, r) = {w ∈ A+ | |w|a = r } and La

q,r where a ∈ A and 0 ≤ r < q. The
Gcom-measurability of L(a, r) can be shown by the same manner with the
proof of Item (2). Hence we have ExtA(Gcom) = ExtA(Com) by Lemma 3.

ut



If we want to show the C-measurability of a given language, the tactics is
rather clear: to create a convergent sequence of languages in C. However, to
show the C-immeasurability of a given language, there is no routine tactics and
it is much harder in most cases. The following theorem gives infinitely many
non-trivial examples of Gcom-immeasurable languages.

Theorem 1. Every group language whose syntactic monoid is non-commutative
is Gcom-immeasurable.

Proof. Let L ∈ GA and suppose that the syntactic monoid G = ML is a non-
commutative group. Let α : A∗ → G be the canonical surjection. Since G is non-
commutative, the commutator subgroup [G,G] of G is nontrivial, i.e., {1} ⊊
[G,G] ⊆ G. Hence the abelianisation Gab = G/[G,G] of G satisfies #(G) >
#
(
Gab

)
. Let π : G → Gab be the natural surjection. Then L is not recognised

by π ◦ α (otherwise G divides Gab, a contradiction). That is, there exist two
words u, v ∈ A∗ such that u ∈ L 63 v and π ◦ α(u) = π ◦ α(v). Hence we have
α(u)−1α(v) ∈ [G,G], i.e., there exist x1, y1, . . . , xl, yl ∈ G such that

α(u)−1α(v) = [x1, y1] · · · [xl, yl] =

l∏
i=1

[xi, yi]

(note that we do not have to consider the inverses of commutators since [x, y]−1 =
[y, x] in general). Since α is surjective, there exist 4l words si, ti, s̄i, t̄i ∈ A∗

(i = 1, . . . , l) such that α(si) = xi, α(ti) = yi, α(s̄i) = x−1
i , and α(t̄i) = y−1

i .
Define two words w,w′ ∈ A∗ by

w =

l∏
i=1

sitit̄is̄i, w′ =

l∏
i=1

sitis̄it̄i.

Then we have

α(w) =

l∏
i=1

xiyiy
−1
i x−1

i = 1, α(w′) =

l∏
i=1

[xi, yi] = α(u)−1α(v).

Note that w′ is a rearrangement of w.
Consider two languages α−1(α(u)) and A∗wA∗ in REGA. Their densities

are δA(α
−1(α(u))) = #(G)

−1
> 0 (by Lemma 2) and δA(A

∗wA∗) = 1 (by
Example 1). The intersection I = α−1(α(u)) ∩A∗wA∗ also has density δA(I) =

#(G)
−1

> 0 by Lemma 1.
To prove that L is Gcom-immeasurable, it suffices to show that every K,M ∈

GcomA with K ⊆ L ⊆ M satisfies I ⊆ M \K since I has positive density. Let
s ∈ I. Since s ∈ α−1(α(u)) and u ∈ L, we have s ∈ L ⊆ M . Since s ∈ A∗wA∗,
there exist t1, t2 ∈ A∗ such that s = t1wt2. The rearrangement s′ = t1t2w

′

of s satisfies α(s′) = α(t1)α(w)α(t2)α(w
′) = α(s)α(u)−1α(v) = α(v), hence

s′ /∈ L ⊇ K. Since s′ /∈ K ∈ GcomA and s′ is a rearrangement of s, we have
s /∈ K. Thus s ∈ M \K. ut



Corollary 1. For any group language L whose syntactic monoid is non-commutative
and for any Gcom-measurable language M , their symmetric difference L4M is
an infinite set.

Proof. Let L ∈ GA and M ∈ ExtA(GcomA) such that ML is non-commutative.
Suppose contrarily that L4M is finite. Then L4M ∈ ExtA(GcomA) and hence
(L 4 M) 4 M ∈ ExtA(GcomA) since ExtA(GcomA) is closed under Boolean
combination. Thus L ∈ ExtA(GcomA), which contradicts Theorem 1. ut

4 Decidable characterisation of Gcom-measurability

The goal of this section is to prove the following Theorem 2, which gives the
decidability of Gcom-measurability for regular languages. The following defini-
tion extends the Parikh mapping into the set of integer vectors so that we can
use group theoretic tools. Intuitively, the set of vectors ZPkhA(L)∩ZPkhA(Lc)
defined in Theorem 2 is a “boundary” between L and its complement from the
viewpoint of commutative group languages. Hence, the equivalence of Condi-
tion (1) and Condition (2) in Theorem 2 states that a regular language L is
Gcom-measurable if and only if the boundary ZPkhA(L) ∩ ZPkhA(Lc) has a
smaller rank (than #(A)). In other words, L is Gcom-measurable if and only if
the boundary is negligible from the viewpoint of commutative group languages.

Definition 5 (ZPkhA). Let L ∈ REGA and choose a representation of the
semilinear set PkhA(L) ⊆ N#(A):

PkhA(L) =
⋃
i

(ci + spanN
(
pi,1, . . . ,pi,µ(i)

)
). (1)

Then we define a semilinear set ZPkhA(L) ⊆ Z#(A) as

ZPkhA(L)
def
==
⋃
i

(ci + spanZ
(
pi,1, . . . ,pi,µ(i)

)
).

Note that ZPkhA(L) depends on the choice (1) of representation of semilinear
set. Our results are, however, true for any choice of representation.

Theorem 2. Let L ∈ REGA and

ZPkhA(L) =
⋃
i

Λi, Λi = ci + spanZ
(
pi,1, . . . ,pi,µ(i)

)
⊆ Z#(A),

ZPkhA(Lc) =
⋃
j

Λ′
j , Λ′

j = c′j + spanZ
(
qj,1, . . . , qj,ν(j)

)
⊆ Z#(A),

ZPkhA(L) ∩ ZPkhA(Lc) =
⋃
k

Λ′′
k , Λ′′

k = c′′k + spanZ
(
rk,1, . . . , rk,ξ(k)

)
⊆ Z#(A).

Then the following are equivalent.



(1) L is Gcom-measurable.
(2) For each (i, j) with Λi ∩ Λ′

j 6= ∅, rank(Λi) < #(A) or rank(Λ′
j) < #(A).

(3) For each k, rank(Λ′′
k) < #(A).

(4) For each (i, j) with Λi ∩ Λ′
j 6= ∅,

– dim(spanR
(
pi,1, . . . ,pi,µ(i)

)
) < #(A) or

– dim(spanR
(
qj,1, . . . , qj,ν(j)

)
) < #(A).

(5) For each k, dim(spanR
(
rk,1, . . . , rk,ξ(k)

)
) < #(A).

The intersection of two semilinear sets, which is again semilinear as stated
in Section 2, and its rank can be effectively computable, thus we obtain the
decidability of Gcom-measurability.

Corollary 2. It is decidable whether a given regular language L is Gcom-measurable
or not.

Proving Theorem 2 involves several lemmata, propositions, and an approxi-
mation notion which we call standard approximation.

For each n ∈ N, we write Pkh[n]A : A∗ → (Z/nZ)#(A) for the composition of
PkhA : A∗ → N#(A) and the natural surjection N#(A) → (Z/nZ)#(A).

Definition 6 (standard approximation). Let L ⊆ A∗ be a (not necessar-
ily regular) language. The standard approximation of L is the two sequences
(Ln)n∈N, (Ln)n∈N of regular languages defined as

Ln
def
== Pkh[n!]−1

A (Pkh[n!]A(L)), Ln
def
== Pkh[n!]−1

A (Pkh[n!]A(L
c))c.

It is easy to see that Ln ⊆ Ln+1 ⊆ L ⊆ Ln+1 ⊆ Ln for each n ∈ N. That is, Ln

(resp. Ln) approximates L from outer (resp. from inner).

Lemma 5. For every L ∈ GcomA, there exists some d ∈ N such that L is
recognised by Pkh[d]A : A∗ → (Z/dZ)#(A).

Proof. Let G be a finite commutative group and α : A∗ → G be a homomorphism
recognising L. Define d = lcm{ ord(α(a)) | a ∈ A }, where ord(α(a)) denotes the
order of α(a) in G. One can then define a well-defined group homomorphism
φ : (Z/dZ)A → G such that φ((xa)a∈A) =

∏
a∈A α(a)xa for each (xa)a∈A ∈

(Z/dZ)A. It is easy to see that α = φ ◦ Pkh[d]A and

L ⊆ Pkh[d]−1
A (Pkh[d]A(L)) ⊆ α−1(α(L)) = L,

thus Pkh[d]A recognises L. ut

Lemma 6. Let L ⊆ A∗ be a language and (Ln ⊆ L ⊆ Ln)n∈N be the standard
approximation of L. Then the following claims hold.

(1) If L ⊆ M ∈ GcomA, then L ⊆ Ln ⊆ M for any sufficiently large n ∈ N.
(2) If GcomA 3 K ⊆ L, then K ⊆ Ln ⊆ L for any sufficiently large n ∈ N.

Proof.



(1) By Lemma 5, we may assume that M is recognised by Pkh[d]A for some
d ∈ N. Let n ∈ N be sufficiently large so that d divides the factorial n!. Then
the natural surjection ρn! : (Z/n!Z)#(A) → (Z/dZ)#(A) makes the diagram

A∗ (Z/n!Z)#(A)

(Z/dZ)#(A)

Pkh[n!]A

Pkh[d]A
ρn!

commute. Thus

L ⊆ Pkh[n!]−1
A (Pkh[n!]A(L)) = Ln

⊆ Pkh[n!]−1
A (ρ−1

n! (ρn!(Pkh[n!]A(L))))

= Pkh[d]−1
A (Pkh[d]A(L)) ⊆ Pkh[d]−1

A (Pkh[d]A(M)) = M.

(2) Similarly, we may assume that K is recognised by Pkh[d]A and

L = (Lc)c ⊇ Pkh[n!]−1
A (Pkh[n!]A(L

c))c = Ln

⊇ Pkh[n!]−1
A (ρ−1

n! (ρn!(Pkh[n!]A(L
c))))c = Pkh[d]−1

A (Pkh[d]A(L
c))c

⊇ Pkh[d]−1
A (Pkh[d]A(K

c))c

since Pkh[d]A is surjective and recognises K,

= Pkh[d]−1
A (Pkh[d]A(K)) = K.ut

Proposition 4. For any language L ⊆ A∗ and its standard approximation
(Ln ⊆ L ⊆ Ln)n∈N, the following are equivalent.

(1) L is Gcom-measurable.
(2) limn→∞ δA(Ln \ Ln) = 0.

Proof. The implication (2) =⇒ (1) is obvious. Conversely, assume that L is
Gcom-measurable. Then there exist sequences (Kn ⊆ L ⊆ Mn)n∈N such that
Kn,Mn ∈ GcomA and limn→∞ δA(Mn \ Kn) = 0. By Lemma 6, there exists a
non-decreasing sequence (N(n))n∈N such that Kn ⊆ LN(n) ⊆ L ⊆ LN(n) ⊆ Mn

for each n ∈ N. Thus limn→∞ δA(Ln \ Ln) = limn→∞ δA(LN(n) \ LN(n)) ≤
limn→∞ δA(Mn \Kn) = 0. ut

Proposition 5. For any language L ⊆ A∗ and its standard approximation
(Ln ⊆ L ⊆ Ln)n∈N, we have

δA(Ln \ Ln) =
#(Pkh[n!]A(L) ∩ Pkh[n!]A(L

c))

(n!)#(A)
.

Proof. We have

Ln \ Ln = Pkh[n!]−1
A (Pkh[n!]A(L)) \ Pkh[n!]−1

A (Pkh[n!]A(L
c))c

= Pkh[n!]−1
A (Pkh[n!]A(L) ∩ Pkh[n!]A(L

c))

and thus Lemma 2 completes the proof. ut



Proposition 6. Let L ∈ REGA and

ZPkhA(L) =
⋃
i

Λi, ZPkhA(Lc) =
⋃
j

Λ′
j ,

where Λi, Λ
′
j ⊆ Z#(A) are linear sets. Then the following are equivalent.

(1) lim
n→∞

#(Pkh[n!]A(L) ∩ Pkh[n!]A(L
c))

(n!)#(A)
= 0.

(2) For any (i, j),

lim
n→∞

#
(
πn!(Λi) ∩ πn!(Λ

′
j)
)

(n!)#(A)
= 0,

where πn! : Z#(A) → (Z/n!Z)#(A) is the natural surjection.

Proof. Note that

#(Pkh[n!]A(L) ∩ Pkh[n!]A(L
c)) = #(πn!(ZPkhA(L)) ∩ πn!(ZPkhA(Lc)))

= #

⋃
i,j

(πn!(Λi) ∩ πn!(Λ
′
j))

 .

(1) =⇒ (2). Contrarily suppose that

lim
n→∞

#
(
πn!(Λi0) ∩ πn!(Λ

′
j0
)
)

(n!)#(A)
> 0

for some (i0, j0) (note that the limit exists because of the monotonicity).
Then

lim
n→∞

#(Pkh[n!]A(L) ∩ Pkh[n!]A(L
c))

(n!)#(A)
= lim

n→∞

#
(⋃

i,j(πn!(Λi) ∩ πn!(Λ
′
j))
)

(n!)#(A)

≥ lim
n→∞

#
(
πn!(Λi0) ∩ πn!(Λ

′
j0
)
)

(n!)#(A)
> 0.

(2) =⇒ (1). We have

lim
n→∞

#(Pkh[n!]A(L) ∩ Pkh[n!]A(L
c))

(n!)#(A)
= lim

n→∞

#
(⋃

i,j(πn!(Λi) ∩ πn!(Λ
′
j))
)

(n!)#(A)

≤ lim
n→∞

∑
i,j #

(
πn!(Λi) ∩ πn!(Λ

′
j)
)

(n!)#(A)
=
∑
i,j

lim
n→∞

#
(
πn!(Λi) ∩ πn!(Λ

′
j)
)

(n!)#(A)

= 0.ut

Proposition 7. Let Λ1, Λ2 ⊆ Z#(A) be two linear sets such that Λ1 ∩ Λ2 6= ∅.
Then the following are equivalent.



(1) lim
n→∞

#(πn!(Λ1) ∩ πn!(Λ2))

(n!)#(A)
= 0.

(2) rank(Λ1) < #(A) or rank(Λ2) < #(A).

(3) rank(Λ1 ∩ Λ2) < #(A).

Proof.

(1) =⇒ (2). Contrarily suppose that rank(Λ1) = rank(Λ2) = #(A). Since the
indices

(
Z#(A) : Λ1

)
and

(
Z#(A) : Λ2

)
are finite by Proposition 1, we have

lim
n→∞

#(πn!(Λ1) ∩ πn!(Λ2))

(n!)#(A)
= lim

n→∞

#(πn!(Λ1) ∩ πn!(Λ2))

#(Z/n!Z)#(A)

= lim
n→∞

1(
(Z/n!Z)#(A) : πn!(Λ1) ∩ πn!(Λ2)

)
≥ lim

n→∞

1(
(Z/n!Z)#(A) : πn!(Λ1)

) · 1(
(Z/n!Z)#(A) : πn!(Λ2)

)
= lim

n→∞

1(
Z#(A) : Λ1 + n!Z#(A)

) · 1(
Z#(A) : Λ2 + n!Z#(A)

)
≥ 1(

Z#(A) : Λ1

) · 1(
Z#(A) : Λ2

) > 0.

(2) =⇒ (1). We may assume that rank(Λ1) < #(A). Then we have

lim
n→∞

#(πn!(Λ1) ∩ πn!(Λ2))

(n!)#(A)
= lim

n→∞

1(
(Z/n!Z)#(A) : πn!(Λ1) ∩ πn!(Λ2)

)
≤ lim

n→∞

1(
(Z/n!Z)#(A) : πn!(Λ1)

) = 0.

The last equality is exactly Proposition 2.

(2) =⇒ (3). rank(Λ1 ∩ Λ2) ≤ min{rank(Λ1), rank(Λ2)} < #(A).

(3) =⇒ (2). Contrarily suppose that rank(Λ1) = rank(Λ2) = #(A). Since
Λ1, Λ2 are coset of Z#(A), there exist constant vectors c1, c2 ∈ Z#(A) and
subgroups M1,M2 ⊆ Z#(A) such that Λ1 = c1 + M1, Λ2 = c2 + M2. Since
Λ1 ∩Λ2 6= ∅, there exists c ∈ M1 ∩M2 such that Λ1 ∩Λ2 = c+ (M1 ∩M2).
Since rank(M1) = rank(Λ1) = #(A) and rank(M2) = rank(Λ2) = #(A),
by Proposition 1, there exists N1, N2 ∈ N such that N1Z#(A) ⊆ M1 and
N2Z#(A) ⊆ M2. Thus N1N2Z#(A) ⊆ M1 ∩M2 and #(A) ≥ rank(Λ1 ∩ Λ2) =
rank(M1 ∩M2) ≥ rank(N1N2Z#(A)) = #(A). ut



Proof (of Theorem 2). The equivalences (2) ⇐⇒ (4) and (3) ⇐⇒ (5) are clear.
For the standard approximation (Ln ⊆ L ⊆ Ln)n∈N of L,

(1) ⇐⇒ lim
n→∞

δA(Ln \ Ln) = 0 (Proposition 4)

⇐⇒ lim
n→∞

#(Pkh[n!]A(L) ∩ Pkh[n!]A(L
c))

(n!)#(A)
= 0 (Proposition 5)

⇐⇒ ∀i, j

[
lim
n→∞

#
(
πn!(Λi) ∩ πn!(Λ

′
j)
)

(n!)#(A)
= 0

]
(Proposition 6)

⇐⇒ ∀i, j

[
Λi ∩ Λ′

j = ∅ ∨
rank(Λi) < #(A) ∨ rank(Λ′

j) < #(A)

]
(Proposition 7)

( ⇐⇒ (2))

⇐⇒ ∀k[rank(Λ′′
k) < #(A)] (Proposition 7)

( ⇐⇒ (3)).ut

5 Simple characterisation of MOD-measurability

The decidability of MOD-measurability for regular languages is essentially al-
ready given by Theorem 2. Moreover, we have a simple language theoretic char-
acterisation of MOD-measurable languages as follows.

Theorem 3. For any L ∈ REGA, the following are equivalent.

(1) L is MOD-measurable.
(2) lenA(L) ∩ lenA(L

c) ⊆ N is a finite set, where lenA : A∗ → N is the length
function w 7→ |w|.

(3) There exists a unique M ∈ MODA such that L4M is a finite set.

Proof. The proof of the equivalence (1) ⇐⇒ (2) is similar to that of Theorem 2.
Indeed, it suffices to replace all the occurrences of Gcom, Pkh, and #(A) in
Section 4 by MOD, len, and 1, respectively. (Note that ZlenA(L)∩ZlenA(Lc) ⊆ Z
is finite if and only if lenA(L) ∩ lenA(L

c) ⊆ N is finite.)

(3) =⇒ (1). From the assumption, L4M and M are both MOD-measurable.
The class ExtA(MODA) is closed under Boolean combination, hence L =
(L4M)4M ∈ ExtA(MODA).

(2) =⇒ (3). Since lenA(L) is a semilinear set of N, we may assume that

lenA(L) =
⋃
i

(ci + spanN(pi)) ∪
⋃
j

{dj} (pi > 0 for each i).

Define S =
⋃

i(c
′
i+spanN(pi)), where c

′
i = ci mod pi. Then we have len−1

A (S) ∈
MODA. Since lenA(L)4 S is a finite set by construction, the inverse image
len−1

A (lenA(L)4S) = len−1
A (lenA(L))4 len−1

A (S) is also finite. Since we have

L4 len−1
A (lenA(L)) = len−1

A (lenA(L)) ∩ Lc ⊆ len−1
A (lenA(L) ∩ lenA(L

c)),



the set L4 len−1
A (lenA(L)) is finite by the assumption (2). Thus

L4 len−1
A (S) = (L4 len−1

A (lenA(L)))4 (len−1
A (lenA(L))4 len−1

A (S))

is a finite set.

Suppose that there exist two languages M1,M2 ∈ MODA such that both
L4M1 and L4M2 are finite sets. Then M1 4M2 = (L4M1)4 (L4M2)
is also a finite set. Since MODA is closed under Boolean combination, M1 4
M2 ∈ MODA. Thus M1 = M2 since the only finite set in MODA is ∅. ut

6 Conclusion and future work

As we described in Section 1, while the measuring power of subclasses of star-free
languages are systematically studied so far, nothing is known for the measuring
power of group languages before. This paper gave the first decidability results
on this topic: the Gcom-measurability and the MOD-measurability for regular
languages are both decidable thanks to Theorem 2. Also, Theorem 1 tells us that
there is a huge gap between group and commutative group languages even from a
(very rough) measure theoretic point of view. To clarify the computational com-
plexity of these two measurability and the decidability of the G-measurability for
regular languages are our important future work. Also, to give a purely algebraic
characterisation of the G-measurability (the Gcom-measurability, respectively) is
an interesting open problem for us. For the case of MOD-measurability, we have
very simple language theoretic characterisation as stated in Theorem 3. We are
interested whether it is possible to obtain a similar language theoretic charac-
terisation of Gcom-measurability.

No different characterisation of REG-measurability is yet known, and only
few examples of REG-immeasurable languages are known (cf. [6]). The Krohn-
Rhodes theorem states that, for every finite monoid M , there exists a sequence
G1, . . . , Gn of finite groups dividing M and a sequence M0, . . . ,Mn of aperiodic
finite monoids such that M divides M0 ◦G1 ◦M1 ◦ · · · ◦Gn ◦Mn where ◦ is the
wreath product operation (cf. [3]). Roughly speaking, this means that every reg-
ular language can be represented as some “combination” of group and star-free
languages because a language is star-free if and only if its syntactic monoid is
aperiodic. In this sense, we can consider the class of group languages and the
class of star-free languages as two representative subclasses of regular languages.
We hope that a deep understanding of the REG-measurable languages (or, group
languages its self) might be obtained by a further study of the measuring power
of group languages.
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A Appendix

Proposition 8 (Smith normal form). Let s < r and p1, . . . ,ps ∈ Zr be r-
dimensional column vectors, and X =

[
p1 · · · ps

]
∈ Zr×s be an r × s matrix.

Then there exists a pair (P,Q) of unimodular matrices P ∈ Zr×r and Q ∈ Zs×s

such that

PXQ =



e1
e2

. . .

es

0

0

0


, e1 | e2 | · · · | es,

where x | y mean that x divides y. Note that any e ∈ N divides 0, i.e., e | 0.
Moreover, there exists an isomorphism Zr/ spanZ(p1, . . . ,ps) ∼= Z/e1Z×Z/e2Z×
· · · × Z/esZ. In particular, if es 6= 0, then (Zr : spanZ(p1, . . . ,ps)) = e1e2 · · · es.

ut
Example 3. Let X = [ 2 0

0 3 ]. Not that X is not in Smith normal form since 2 ∤ 3.
Then, by applying elementary row and column operations, we have[

2 0
0 3

]
⇝
[
2 0
3 3

]
⇝
[
2 0
−1 3

]
⇝
[
1 3
−1 3

]
⇝
[
1 0
−1 6

]
⇝
[
1 0
0 6

]
.

Thus Z/2Z× Z/3Z ∼= Z2/ spanZ([
2
0 ], [

0
3 ])

∼= Z2/ spanZ([
1
0 ], [

0
6 ])

∼= Z/6Z.
Proof (Proof of Proposition 2). Let rank(M) = s < r and p1, . . . ,ps ∈ Zr be
a free basis of M . Define an r × s matrix X ∈ Zr×s as X =

[
p1 · · · ps

]
. Then,

by Proposition 8, there exist two unimodular matrices P ∈ Zr×r and Q ∈ Zs×s

such that

PXQ =



e1
e2

. . .

es

0

0

0


, e1 | e2 | · · · | es.

Here e1, e2, . . . , es are all non-zero since rank(M) = s. Let e1, . . . , er be the
standard basis of Zr. Define an r × (s+ r) matrix X(t) ∈ Z[t]r×(s+r) as X(t) =[
p1 · · · ps te1 · · · ter

]
. Then there exist two matrices Y ∈ Zs×r and Z ∈ Z(r−s)×r

such that

P ·X(t) ·
[
Q O
O Ir

]
=



e1
e2

. . .

es

0
tY

0

0 tZ


,



where Ir ∈ Zr×r is the identity matrix. Suppose that the Smith normal form of
Z is 

es+1

es+2

. . .

er

0
0

0

.
If n ≥ max{e1, e2, . . . , es}, then the Smith normal form of X(n!) is

e1
e2

. . .

es
n!es+1

n!es+2

. . .

n!er

0
0 0

0

0
0

0
0


.

Here es+1, es+2, . . . , er are all non-zero since rank(M+n!Zr) = r. Hence we have

lim
n→∞

((Z/n!Z)r : πn!(M))

= lim
n→∞

(Zr : M +Ker(πn!)) = lim
n→∞

(Zr : M + n!Zr)

= lim
n→∞

(Zr : spanZ(p1, . . . ,ps, n!e1, . . . , n!er))

= lim
n→∞

#

(
Z/e1Z× Z/e2Z× · · · × Z/esZ×
Z/n!es+1Z× Z/n!es+2Z× · · · × Z/n!erZ

)
= lim

n→∞
e1e2 · · · es(n!es+1)(n!es+2) · · · (n!er) = ∞.ut
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