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Abstract. Elder, Kambites, and Ostheimer showed that if a finitely
generated group H has word problem accepted by a G-automaton for
an abelian group G, then H has an abelian subgroup of finite index.
Their proof is, however, non-constructive in the sense that it is by con-
tradiction: they proved that H must have a finite index abelian subgroup
without constructing any finite index abelian subgroup of H. In addition,
a part of their proof is in terms of geometric group theory, which makes
it hard to read without knowledge of the field.
We give a new, elementary, and in some sense more constructive proof
of the theorem, in which we construct, from the abelian G-automaton
accepting the word problem of H, a group homomorphism from a sub-
group of G onto a finite index subgroup of H. Our method is purely
combinatorial and contains no geometric arguments.
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1 Introduction

For a group G, a G-automaton is a variant of usual finite state automata, which
is augmented with a memory register that stores an element of G. During the
computation of a G-automaton, the content of the register may be updated
by multiplying on the right by an element of G, but cannot be seen. Such an
automaton first initializes the register with the identity element 1G of G, and
the automaton accepts an input word if, by reading this word, it can reach a
terminal state, in which the register content is 1G. (For the precise definition,
see Section 2.4.) For a positive integer n, Zn-automata are the same as blind n-
counter automata, which were defined and studied by Greibach [14,15]. Note that
the notion of G-automata is discovered repeatedly by several different authors.
The name “G-automaton” is due to Kambites [22]. (In fact, they introduced the
notion of M -automata for any monoid M .) Render–Kambites [31] uses G-valence
automata and Dassow–Mitrana [8] and Mitrana–Stiebe [26] use extended finite
automata (EFA) over G instead of G-automata.

http://dx.doi.org/10.1007/978-3-031-33264-7_20
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For a finitely generated group H, the word problem of H, with respect to a
fixed finite generating set of H, is the set of words over the generating set rep-
resenting the identity element of H (see Section 2.2 for the precise definitions).
For several language classes, the class of finitely generated groups whose word
problem is in the class has been determined [1,27,2,17,10,19,28], and many at-
tempts are made for other language classes [3,4,20,12,24,21,25,13,30]. One of the
most remarkable theorems about word problems is the well-known result due to
Muller and Schupp [27], which states that, with the theorem by Dunwoody [9],
a group has a context-free word problem if and only if it is virtually free, i.e.,
has a free subgroup of finite index. These theorems suggest deep connections
between group theory and formal language theory.

Involving both G-automata and word problems, the following broad ques-
tion was posed implicitly by Elston and Ostheimer [11] and explicitly by Kam-
bites [22].

Question 1. For a given group G, is there any connection between the structural
property of G and of the collection of groups whose word problems are accepted
by non-deterministic G-automata?

Note that by G-automata, we always mean non-deterministic G-automata in
this paper. As for deterministic G-automata, the following theorem is known.

Theorem 1 (Kambites [22, Theorem 1], 2006). Let G and H be groups
with H finitely generated. Then the word problem of H is accepted by a deter-
ministic G-automaton if and only if H has a finite index subgroup which embeds
in G.

For non-deterministic G-automata, several results are known for specific types of
groups. For a free group F of rank ≥ 2, it is known that a language is accepted by
an F -automaton if and only if it is context-free (essentially by [5, Proposition
2], see also [7, Corollary 4.5] and [23, Theorem 7]). Combining with the Muller–
Schupp theorem, the class of groups whose word problems are accepted by F -
automata is the class of virtually free groups. The class of groups whose word
problems are accepted by (F × F )-automata is exactly the class of recursively
presentable groups [7, Corollary 3.5][23, Theorem 8][26, Theorem 10].

For the case where G is (virtually) abelian, the following result was shown
by Elder, Kambites, and Ostheimer. Recall that a group G is called virtually
abelian if it has an abelian subgroup of finite index.

Theorem 2 (Elder, Kambites, and Ostheimer [10], 2008).

(1) Let H be a finitely generated group and n be a positive integer. Then the word
problem of H is accepted by a Zn-automaton if and only if H is virtually free
abelian of rank at most n [10, Theorem 1].

(2) Let G be a virtually abelian group and H be a finitely generated group. Then
the word problem of H is accepted by a G-automaton if and only if H has a
finite index subgroup which embeds in G [10, Theorem 4].
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However, their proof is non-constructive in the sense that it is by contradiction:
they proved that H must have a finite index abelian subgroup without construct-
ing any finite index abelian subgroup of H. In addition, their proof depends on
a deep theorem in geometric group theory due to Gromov [16], which states
that every finitely generated group with polynomial growth function is virtually
nilpotent.

The proof of Theorem 2 in [10] proceeds as follows. Let H be a finitely gen-
erated group whose word problem is accepted by a Zn-automaton. First, some
techniques to compute several bounds for linear maps and semilinear sets are
developed. Then a map from H to Zn with some geometric conditions is con-
structed to prove that H has polynomial growth function. By Gromov’s theorem,
H is virtually nilpotent. Finally, it is proved that H is virtually abelian, using
some theorems about nilpotent groups and semilinear sets. Theorem 2 (2) is
deducible from Theorem 2 (1). Because of the non-constructivity of the proof,
the embedding in Theorem 2 (2) is obtained only a posteriori and hence has
nothing to do with the G-automaton.

To our knowledge, there are almost no attempts so far to obtain explicit alge-
braic connections between G and H, where H is a finitely generated group with
word problem accepted by a G-automaton. The only exception is the result due
to Holt, Owens, and Thomas [19, Theorem 4.2], where they gave a somewhat
combinatorial proof to a special case of Theorem 2 (1), for the case where n = 1.
(In fact, their theorem is slightly stronger than Theorem 2 (1) for n = 1 because
it is for non-blind one-counter automata. See also [10, Section 7].) However, their
proof also involves growth functions.

In this paper, we give an elementary, purely combinatorial proof of the fol-
lowing our main theorem, which is equivalent to Theorem 2 (see Section 3).

Theorem 3. Let G be an abelian group and H be a finitely generated group.
Suppose that the word problem of H is accepted by a G-automaton. Then there
exists a group homomorphism from a subgroup of G onto a finite index subgroup
of H.

Our proof of Theorem 3 proceeds as follows. Suppose that the word problem
of a finitely generated group H is accepted by a G-automaton A, where G is
an abelian group. First, we prove that there exist only finitely many minimal
accepting paths in A. Next, for each vertex p of A and each minimal accepting
path µ in A, we define a set M(µ, p) of closed paths that is pumpable in µ
and starts from p, and prove that each M(µ, p) forms a monoid with respect
to concatenation. Then, we show that each monoid M(µ, p) induces a group
homomorphism fµ,p from a subgroup G(µ, p) of G onto a subgroup H(µ, p) of
H. Finally, we show that at least one of the H(µ, p)’s has finite index in H.

In addition to this introduction, this paper comprises four sections. Section 2
provides necessary preliminaries, notations, and conventions. In Section 3, we
reduce Theorem 2 to Theorem 3 and vice versa. Section 4 is devoted to the
proof of Theorem 3. Section 5 concludes the paper.
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2 Preliminaries

2.1 Words, subwords, and scattered subwords

For a set Σ, we write Σ∗ for the free monoid generated by Σ, i.e., the set of
words over Σ. For a word u = a1a2 · · · an ∈ Σ∗ (n ≥ 0, ai ∈ Σ), the number n
is called the length of u, which is denoted by |u|. For two words u, v ∈ Σ∗, the
concatenation of u and v are denoted by u ·v, or simply uv. The identity element
of Σ∗ is the empty word, denoted by ε, which is the unique word of length zero.
For an integer n ≥ 0, the n-fold concatenation of a word u ∈ Σ∗ is denoted by
un. For an integer n > 0, we write Σ<n for the set of words of length less than
n.

A word u ∈ Σ∗ is a subword of a word v ∈ Σ∗, denoted by u ⊑ v, if
there exist two words u1, u2 ∈ Σ∗ such that u1uu2 = v. A word u ∈ Σ∗ is a
scattered subword of a word v ∈ Σ∗, denoted by u ⊑sc v, if there exist two finite
sequences of words u1, u2, . . . , un ∈ Σ∗ (n ≥ 0) and v0, v1, . . . , vn ∈ Σ∗ such that
u = u1u2 · · ·un and v = v0u1v1u2v2 · · ·unvn. That is, v is obtained by inserting
some words in u. Note that the two binary relations ⊑ and ⊑sc are both partial
orderings on Σ∗.

2.2 Word problem for groups

Let H be a finitely generated group. A choice of generators for H is a surjective
monoid homomorphism ρ from the free monoid Σ∗, on a finite alphabet Σ,
onto H. The word problem of H with respect to ρ, denoted by WPρ(H), is
the set of words in Σ∗ mapped to the identity element 1H of H via ρ, i.e.,
WPρ(H) = ρ−1(1H).

Although the word problem WPρ(H) depends on the choice of generators ρ,
this does not cause problems, at least for our purpose:

Proposition 1 (e.g., [20, Lemma 1]). Let C be a class of languages closed
under inverse homomorphisms and let H be a finitely generated group. Then
WPρ(H) ∈ C for some choice of generators ρ if and only if WPρ(H) ∈ C for
every choice of generators ρ. ⊓⊔

Therefore we usually say “the word problem of H” rather than “a word problem
of H.”

2.3 Graphs and paths

A graph is a 4-tuple (V,E, s, t), where V is the set of vertices, E is the set of
(directed) edges, s : E → V and t : E → V are functions assigning to every edge
e ∈ E the source s(e) ∈ V and the target t(e) ∈ V , respectively. A graph is finite
if it has only finitely many vertices and edges.

A path (of length n) in a graph Γ = (V,E, s, t) is a word e1e2 · · · en ∈ E∗ (n ≥
0) of edges ei ∈ E such that t(ei) = s(ei+1) for i = 1, 2, . . . , n−1. We usually use
Greek letters for paths in a graph. For a non-empty path ω = e1e2 · · · en ∈ E∗,
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the source and the target of ω are defined as s(ω) = s(e1) and t(ω) = t(en),
respectively. If ω = e1e2 · · · en and ω′ = e′1e

′
2 · · · e′k are non-empty paths such

that t(ω) = s(ω′), or at least one of ω and ω′ is empty, then the concatenation
of ω and ω′, denoted by ω · ω′ or ωω′, is the path e1e2 · · · ene′1e′2 · · · e′k of length
n + k, i.e., the concatenation as words. A path ω in Γ is closed if s(ω) = t(ω),
or ω = ε. For a closed path σ and an integer n ≥ 0, we write σn for the n-fold
concatenation of σ.

For a graph Γ = (V,E, s, t), an edge-labeling function is a function ℓ from E
to a set M . If M is a monoid and ω = e1e2 · · · en ∈ E∗ is a path in Γ , then the
label of ω is defined as ℓ(ω) = ℓ(e1)ℓ(e2) · · · ℓ(en) via the multiplication of M .

2.4 G-automata

For a group G, a (non-deterministic) G-automaton over a finite alphabet Σ is
defined as a 5-tuple (Γ, ℓG, ℓΣ , pinit, pter), where Γ = (V,E, s, t) is a finite graph,
ℓG : E → G and ℓΣ : E → Σ∗ are edge-labeling functions, pinit ∈ V is the
initial vertex, and pter ∈ V is the terminal vertex. For simplicity, we assume that
ℓΣ(e) ∈ Σ ∪ {ε} for each e ∈ E. (Note that this assumption does not decrease
the accepting power of G-automata. Indeed, if necessary, one can subdivide an
edge e with labels ℓΣ(e) = uv, ℓG(e) = g into two new edges e1, e2 with labels
ℓΣ(e1) = u, ℓG(e1) = g and ℓΣ(e2) = v, ℓG(e2) = 1G.) An accepting path in a
G-automaton A = (Γ, ℓG, ℓΣ , pinit, pter) is a path α in Γ such that s(α) = pinit,
t(α) = pter, and ℓG(α) = 1G (we consider that the empty path ε ∈ E∗ is
accepting if and only if pinit = pter). We say that a path ω in Γ is promising if ω
is a subword of some accepting path in A, i.e., there exist two paths ω1, ω2 ∈ E∗

such that the concatenation ω1ωω2 ∈ E∗ is an accepting path in A. The language
accepted by a G-automaton A, denoted by L(A), is the set of all words u ∈ Σ∗

such that u is the label of some accepting path in A, i.e.,

L(A) = { ℓΣ(α) ∈ Σ∗ | α is an accepting path in A }.

We say that a G-automaton A is abelian if G is an abelian group.
The class of languages accepted by G-automata satisfies the assumption of

Proposition 1:

Proposition 2 (e.g., [23, Proposition 2]). For a group G, the class of lan-
guages accepted by G-automata is closed under inverse homomorphisms. ⊓⊔

Therefore one can speak of a group H whose word problem is accepted by a
G-automaton without any reference to generating set for H.

3 Equivalence of Theorem 3 and Theorem 2

Proposition 3. Theorem 3 implies Theorem 2.

Proof. Since Theorem 2 (2) is deducible from Theorem 2 (1) [10, Section 6], it
suffices to show Theorem 2 (1). If H is a finitely generated group and Zm is
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a finite index subgroup of H for some m ≤ n, then one can easily construct a
Zn-automaton that accepts the word problem of H (see e.g., [11, Theorem 7]).
Conversely, suppose that the word problem of H is accepted by a Zn-automaton.
By Theorem 3, there exists a group homomorphism f from a subgroup G0 of Zn

onto a finite index subgroup H0 of H. In general, a subgroup S of a free abelian
group F is also free abelian, and the rank of S does not exceed that of F (see
e.g., [32, 4.2.3]). Thus G0

∼= Zm for some m ≤ n. Since H0 is a homomorphic
image of Zm, H0 is an abelian group generated by at most m elements. Hence,
by the fundamental theorem of finitely generated abelian groups (see e.g., [32,
4.2.10]), H0 has a finite index subgroup isomorphic to Zk for some k ≤ m. Thus
H has a finite index subgroup isomorphic to Zk. ⊓⊔
Proposition 4. Theorem 2 implies Theorem 3.

Proof. Suppose that the word problem of a finitely generated group H is ac-
cepted by a G-automaton A, where G is an abelian group. By Theorem 2 (2),
there exist a finite index subgroup H0 of H and an embedding f : H0 → G. Since
f is injective, the homomorphism f−1 : f(H0) → H0 is the desired one.

4 Proof of Theorem 3

Throughout this section, we fix an abelian group G, a finitely generated group
H, a choice of generators ρ : Σ∗ → H, and an abelian G-automaton A = (Γ =
(V,E, s, t), ℓG, ℓΣ , pinit, pter) such that WPρ(H) = L(A). We write the group
operation of G additively and write 0G for the identity element of G.

4.1 Minimal accepting paths

The minimal accepting paths, defined below, play a central role in this paper.

Definition 1. An accepting path α in A is minimal if it is minimal with re-
spect to the scattered subword relation ⊑sc on E∗ among the accepting paths. An
accepting path α in A dominates a minimal accepting path µ in A if µ ⊑sc α.

A similar notion of minimal accepting paths can be found in [6, Section 4].

Proposition 5 (Higman’s lemma [18, Theorem 4.4]). For any finite
alphabet Σ, the scattered subword relation ⊑sc on Σ∗ is a well-quasi-order, i.e.,
for any infinite sequence u1, u2, . . . ∈ Σ∗, there exist some i < j such that
ui ⊑sc uj. ⊓⊔
Corollary 1. There are only finitely many minimal accepting paths in A, and
every accepting path on A dominates some minimal accepting path in A.

Proof. Suppose the contrary that there are infinitely many distinct minimal
accepting paths µ1, µ2, . . . ∈ E∗. Then we have µi ̸⊑sc µj for any i < j because
of the minimality of µj , a contradiction. The second half of the lemma is also
true since a well-quasi-ordered set admits no infinite descending sequence. ⊓⊔
Note that if pinit = pter then the only minimal accepting path is the empty path
ε.
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4.2 Pumpable paths and the monoids M(µ, p)

Definition 2. Let µ = e1e2 · · · en ∈ E∗ (ei ∈ E) be a minimal accepting path
in A. A closed path σ ∈ E∗ in Γ is pumpable in µ if there exists an accept-
ing path α in A dominating µ such that α = α0e1α1e2 · · · enαn for some paths
α0, α1, . . . , αn ∈ E∗ in Γ and σ ⊑ αj for some j ∈ {0, 1, . . . , n}.

Remark 1.

(1) In Definition 2, each αi inserted to µ is a closed path in Γ . In addition,
ℓG(α0)+ℓG(α1)+ · · ·+ℓG(αn) = 0G since G is abelian and ℓG(α) = ℓG(µ) =
0G.

(2) Every closed path σ pumpable in a minimal accepting path µ is promis-
ing since σ is a subword (not a scattered subword) of an accepting path α
dominating µ.

Definition 3. For a minimal accepting path µ in A and a vertex p ∈ V , define

M(µ, p) =

{
σ ∈ E∗

∣∣∣∣∣ σ is a closed path in Γ pumpable in µ

such that s(σ) = p, or σ = ε

}
.

Note that there are only finitely many M(µ, p)’s by Corollary 1.

Lemma 1. Each M(µ, p) is a monoid with respect to the concatenation opera-
tion, i.e., σ1, σ2 ∈ M(µ, p) implies σ1σ2 ∈ M(µ, p).

Proof. Since both σ1 and σ2 are pumpable in µ = e1e2 · · · en ∈ E∗ (ei ∈ E),
there exist two accepting paths α = α0e1α1e2 · · · enαn (αi ∈ E∗) and β =
β0e1β1e2 · · · enβn (βi ∈ E∗) such that σ1 ⊑ αi and σ2 ⊑ βj for some i, j ∈
{0, 1, . . . , n}. Then we have αi = α′

iσ1α
′′
i for some α′

i, α
′′
i ∈ E∗ and βj = β′

jσ2β
′′
j

for some β′
j , β

′′
j ∈ E∗. We may assume that i ≤ j. Since G is abelian, the merged

path γ = (α0β0)e1(α1β1)e2 · · · en(αnβn) and its permutation

γ′ = (α0β0)e1(α1β1)e2 · · · ei(α′
iσ1σ2α

′′
i βi)ei+1 · · · ej(αjβ

′
jβ

′′
j )ej+1 · · · en(αnβn)

(1)
are accepting paths in A by Remark 1 (1) (Figure 1). ⊓⊔

Lemma 2. Let σ and τ be closed paths in Γ such that s(τ) = p (or τ = ε) and
τ ⊑sc σ ∈ M(µ, p). Then τ ∈ M(µ, p).

Proof. Suppose that τ = e′1e
′
2 · · · e′k (k ≥ 0, e′i ∈ E) and σ = σ0e

′
1σ1e

′
2 · · · e′kσk

(σi ∈ E∗). Note that each σi is a closed path in Γ . Since, by Lemma 1, σ2 is
pumpable in µ = e1e2 · · · en (n ≥ 0, ei ∈ E), there exists an accepting path α =
α0e1α1e2 · · · enαn dominating µ such that σ2 ⊑sc αi for some i ∈ {0, 1, . . . , n}.
If αi = α′

iσ
2α′′

i , then the path

α0e1α1e2 · · · ei(α′
i · τ · (σ2

0e
′
1σ

2
1e

′
2 · · · e′kσ2

k) · α′′
i )ei+1 · · · enαn (2)

is an accepting path in A by Remark 1 (1) (Figure 2). ⊓⊔
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µ =


, α =

 α′
i

α′′
i

σ1
, β =

 β′′
j

β′
j

σ2


⇝ γ =


 ⇝ γ′ =




Fig. 1. Construction of the accepting path γ′ in (1)

σ =


, τ =


⇝ σ2 =




⇝ τ · (σ2
0e

′
1σ

2
1e

′
2 · · · e′kσ2

k) =




Fig. 2. Construction of the path τ · (σ2
0e

′
1σ

2
1e

′
2 · · · e′kσ2

k) in (2)

Lemma 3. Let σ ∈ M(µ, p) and ω ⊑ σ be a path. Then there exist two paths
ω1, ω2 ∈ E<|V | such that ω1ωω2 ∈ M(µ, p).

Proof. Let (ω1, ω2) ∈ E∗×E∗ be a pair of two paths such that ω1ωω2 ∈ M(µ, p)
and max{|ω1|, |ω2|} is minimum. Such a pair exists since ω ⊑ σ ∈ M(µ, p). Sup-
pose the contrary that max{|ω1|, |ω2|} ≥ |V |, say |ω1| ≥ |V |. By the pigeonhole
principle, ω1 must visit some vertex p ∈ V at least twice. That is, there exist
three paths α, β, γ such that ω1 = αβγ and β is a non-empty closed path. Now
we have αγωω2 ⊑sc ω1ωω2 ∈ M(µ, p), and Lemma 2 implies αγωω2 ∈ M(µ, p),
which contradicts the minimality of (ω1, ω2). ⊓⊔

4.3 Group homomorphisms fµ,p from G(µ, p) onto H(µ, p)

For each M(µ, p), Lemma 1 allows us to define a surjective monoid homo-
morphism φµ,p : M(µ, p) → ρ(ℓΣ(M(µ, p))) as the composition function ρ ◦
ℓΣ . Then each φµ,p induces a well-defined surjective monoid homomorphism
φ̄µ,p : ℓG(M(µ, p)) → ρ(ℓΣ(M(µ, p))) thanks to the following Lemma 4.

Lemma 4. Let ω and ω′ be paths in Γ such that s(ω) = s(ω′) and t(ω) = t(ω′),
and suppose that ω is promising. Then ℓG(ω) = ℓG(ω

′) implies ρ(ℓΣ(ω)) =
ρ(ℓΣ(ω

′)).
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Proof. Since ω is promising, there exist two paths ω1, ω2 in Γ such that ω1ωω2

is an accepting path in A. From the assumption ℓG(ω) = ℓG(ω
′), we have

ℓG(ω1ω
′ω2) = ℓG(ω1ωω2) = 0G and hence ω1ω

′ω2 is also an accepting path
in A. That is, ℓΣ(ω1ωω2), ℓΣ(ω1ω

′ω2) ∈ L(A) ⊆ WPρ(H) and hence

ρ(ℓΣ(ω1))ρ(ℓΣ(ω))ρ(ℓΣ(ω2)) = 1H = ρ(ℓΣ(ω1))ρ(ℓΣ(ω
′))ρ(ℓΣ(ω2)).

Since H is cancellative, we have ρ(ℓΣ(ω)) = ρ(ℓΣ(ω
′)). ⊓⊔

Let G(µ, p) (resp. H(µ, p)) denote the subgroup of G generated by ℓG(M(µ, p))
(resp. the subgroup of H generated by ρ(ℓΣ(M(µ, p)))).

Lemma 5. One can extend φ̄µ,p : ℓG(M(µ, p)) → ρ(ℓΣ(M(µ, p))) to a unique
surjective group homomorphism fµ,p : G(µ, p) → H(µ, p).

Proof. Since G is an abelian group, every element g ∈ G(µ, p) can be written as
g = ℓG(σ1)− ℓG(σ2) for some σ1, σ2 ∈ M(µ, p). Defining fµ,p(g) = ρ(ℓΣ(σ1))−
ρ(ℓΣ(σ2)), one can easily check the well-definedness, the uniqueness, and the
surjectivity. ⊓⊔

4.4 One of the H(µ, p)’s has finite index in H

The remaining task is to prove that at least one of the H(µ, p)’s has finite index
in H. To do this, we use B. H. Neumann’s lemma in the following form.

Proposition 6 (B. H. Neumann’s lemma [29, (4.1) Lemma and (4.2)]).
Let H be a group, H1, H2, . . . ,Hn be subgroups of H, and a1, b1, a2, b2, . . . , an, bn
be elements of H. If H =

⋃n
i=1 aiHibi, then at least one of the Hi’s is of index

at most n in H. ⊓⊔

Lemma 6. The following holds.

H =
⋃{

h−1
1 H(µ, p)h−1

2

∣∣∣∣∣ µ is a minimal accepting path in A,

p ∈ V , and h1, h2 ∈ ρ(Σ<|V |)

}
. (3)

Proof. Let h ∈ H and fix a word v ∈ Σ∗ such that ρ(v) = h. Since ρ is surjective,
there exists a word v̄ ∈ Σ∗ such that ρ(v̄) = ρ(v)−1. Define

N = 1 +max{ |µ| | µ ∈ E∗ is a minimal accepting path in A },

and we have N < ∞ by Corollary 1. Since (vv̄)N ∈ WPρ(H) ⊆ L(A), there
exists an accepting path

α = ω1ω̄1ω2ω̄2 · · ·ωN ω̄N (4)

in A such that ℓΣ(ωi) = v and ℓΣ(ω̄i) = v̄ for i = 1, 2, . . . , N . Let µ = e1e2 · · · en
(ei ∈ E) be a minimal accepting path such that α dominates µ. Then we have
another decomposition

α = α0e1α1e2 · · · enαn (5)
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for some closed paths α0, α1, . . . , αn ∈ E∗. Since N > |µ| = n and each ei in the
decomposition (5) is contained in at most one ωi in the decomposition (4), at
least one of the ωi’s is “disjoint” from all ei’s, i.e., there exist i ∈ {1, 2, . . . , N}
and j ∈ {0, 1, . . . , n} such that ωi ⊑ αj . Since αj is a pumpable closed path in
µ, we have αj ∈ M(µ, p), where p = s(αj). By Lemma 3, there exist α′

j , α
′′
j ∈

E<|V | such that α′
jωiα

′′
j ∈ M(µ, p). Then we have |ℓΣ(α′

j)|, |ℓΣ(α′′
j )| < |V | and

ρ(ℓΣ(α
′
j))ρ(ℓΣ(ωi))ρ(ℓΣ(α

′′
j )) ∈ ρ(ℓΣ(M(µ, p))) ⊆ H(µ, p), hence

h = ρ(v) = ρ(ℓΣ(ωi)) ∈ ρ(ℓΣ(α
′
j))

−1H(µ, p)ρ(ℓΣ(α
′′
j ))

−1.

Thus (3) holds. ⊓⊔

Proof of Theorem 3. Since G is an abelian group and L(A) ⊆ WPρ(H), we have
surjective group homomorphisms fµ,p : G(µ, p) → H(µ, p) by Lemmata 4 and 5.
Since WPρ(H) ⊆ L(A), the equation (3) holds by Lemma 6, and the right-
hand side of (3) is a finite union of cosets of H by Corollary 1. Thus, by B. H.
Neumann’s lemma (Proposition 6), at least one of the H(µ, p)’s is of index at
most |{µ | µ is a minimal accepting path in A }| × |V | × |Σ<|V ||2 in H. ⊓⊔

5 Conclusion

We gave a new, elementary, purely combinatorial proof of the theorem due to
Elder, Kambites, and Ostheimer, which states that if a finitely generated group
H has word problem accepted by an abelian G-automaton A, then H is virtually
abelian. In contrast to their original geometric argument, we stuck to the combi-
natorial link—the abelian G-automaton A—between the two groups G and H,
and we obtained explicit algebraic connections between them as finitely many
group homomorphisms fµ,p : G(µ, p) → H(µ, p).

We leave the following question as our future work.

Question 2. Let G and H be (not necessarily abelian) groups with H finitely
generated. Suppose that the word problem of H is accepted by a G-automaton.
Can one combinatorially obtain a group homomorphism from a subgroup of G
onto a finite index subgroup of H?

For example, how about the case where G is free or nilpotent? Our Theorem 3
is the very first step for approaching Question 2.
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